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1 INTRODUCTION 

Inclusion of the effects of douds in climate models to a remarkably high 

degree of precision is al:nost certain to be a prerequisite to any reasonable 

degree of reliability in climate preciiction because of the sensitivity of. for 

example, surface temperatures to cloud albedo. Unfortunately, many of the 

majof r.-hysical processes taking place in clouds are still poorly understood. 

Some of them involve not only physics, but marine biology, oceanic and 

atmospheric chemistry, and other disciplines outside of physics. as well. It is 

likely, therefore, that no~ only do physical processes that are understood need 

to be modeled much more accurately than is now done, out many presently 

ignored processes have to be included as well. Indeed, this is the motivation 

behind DOE's Atmospheric Radiation Measurement (ARM) program. 

This paper addresses, as an illustrative example, one such previously 

unknown complex interdisciplinary process providing a ff'edback loop which 

may have a major impact on the effect on global climate of the steadily 

increasing growth of greenhouse gases in the atmospher('. It is to be stressed 

that this is only one of a number of such feedback loops, many of which have 

probably not even been thought of yet, bllt all of which are entirely ignored 

ill present day computer models. 

Clouds influence climate in two major ways: they reflect incident short 

wavplength solar radiation thus preventing it from reaching the earth's sur­

fate and ::"d.tiull, it. anti they absorb outgoing long wavelength radiation from 



the earth thus reducing the earth's ability to cool its('lf. Which of these two 

competing, opposite sign, effects dominates is a sensitive function of the in­

teraction of clouds with radiation, which is itself a sensitive function of the 

processes going on within various kinds of clou~s. 

Solar radiation is (to a good approximation) a black-body spectrum at 

.5,780o K, which peaks in the visible at a wavelength of about 0.5 11m. At til(' 

earth, the flux of solar radiation is 1,370 watts/m2
, and due to the existence 

of day and night and because the earth is a sphere, the average s01ar energy 

incident at the top of the atmosphere is one fourth of this. The average carl Ii 

albedo is .3, so 30% of the incident radiat.ion is reflected, leaving 240 watts 

m 2 to be absorbed by the earth's surface and atmosphere. 

Radiation emitted from the earth is (to a relatively poor approximation) 

a black-body spectrum at 255°K, which peaks in the infrared at about 10 11m. 

There is essentially no overlap between the solar spectrum and the earth's 

spectrum. As the outgoing IR radiation passes through the atmospht're. somf' 

of it is absorbed and reradiated back toward the earth, but of collrse the net 

IR radiation escaping into space from the top of the atmosphere is also 2tO 

watts/m2 , since the earth is (essentially) in equilibrium. 

The black-body spectra and the principal atmospheric absorption bands 

are shown in Figure I. 

The albedo of t h(' ('arth'5 surface (insofar as it can be measured from 

satellites) is no more than .LI). The average cloud cover over the earth is 

observed to be 60% (65% OVf~r thp ocean and 50% over the land). Hence, to 
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Figure 1. Curves of black-body energy B, at wavelength h for 5.780 K (approximating to the 
sun's temperature) and 255 K (approximating to the atmosphere's mean 
temperature) The curves have been drawn c f equal areas since integrated over the 
earth's surface and all angles the solar and terrestrial fluxes are equal. 
Absorption by atmospheriC gases for a clear vertical column of atmosphere. The 
positions of the absorption bands of the main constituents are marked. (From 
R M. Goudy "AtmospheriC Radiation, " Oxford, 1964) 
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make up the average albedo of .3, the albedo of clouds is about Ar}. Clouds 

are therefore the most important component in the amount of reflected sun­

light, and their existence is crucial in determ1l1ing the surface tf'mperature 

of t he earth. In fact, (if other parameters were held constant) a change of 

cloud albedo by 2% would warm the earth's surface by lOCI. Evidently, th<' 

modeling of clouds in climate models must be done very accurately. 

Clouds are composed of water droplets and/or ice crystals. which form 

on cloud condensation nuclei (CCN). (In principle. condensation of water 

vapor can occur at humidities above 100%. but because the vapor pressure 

increases with the curvature of the surface at which condensation occurs, in 

practice humidities of above 300% are needed for pure water vapor to con­

dense. Therefore actual cloud formation takes place because of the prpsence 

of relatively large aerosols. These aerosols constitute CC;'\.) Clouds OCCUr in 

several different forms. depending on their altitude, formation nwchanisms. 

hydrodynamic properties. etc. Table }2 shows the distribution of the various 

forms over land and ocean. The relative amounts of these typ(>s often haw 

diurnal variations which are of considerable importance. For examplf'. th(' 

ratio of stratus to stratocumulus varif's from less than 207c at local noon to 

nearly 30% in th(' early morning, while cumulonimbus peaks at 30% in late 

afternoon or evening and vanishes early in tht' morningl
. 
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Table 1 
Ocean 

Average % of Sky Cover over { Land 

of Various Cloud Types 

Cumulus 

Cumulonimbus 

12 
5 

6 
4 

Stratus and Stratocumulus :J4 
18 

Nimbostratus 

Altostratus 
and Altocumulus 

Cirrus 

5 

6 
6 

22 
21 

13 
23 
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2 INCIDENT SOLAR RADIATION 

For incident solar radiation, emission is irrelevant because at A '"v O..')l1rn. 

the black body spectrum at the earth's temperature of around 2700K is es­

sentially zero. So only scattering and absorption count. To a first approx­

imation, let us neglect scattering into the beam, and assume the incidf'nt 

solar radiation suffers only losses due to clouds. Thus the radiation intensity 

I~(k, z) .:>f photons of wavelength>' travelling in the direction k satisfies1 

(2 - 1) 

where 0' are absorption and scattering cross sections and .\ is particle density. 

Therefore, 

(2 - 2) 

where the (dimensionless) optical depth 'T' is 

1"2 

T{ZZ' z) == O'~(z)N(z)dz 
'I 

(2 - :~) 

awl 

(2 - 4) 

is the extinction cross section. 

Each type of cloud has, at a given height ZI, a distribution n( r, z) of sizes 

with particles of radius r (ice crystals are of course not spherically symmetric. 

though their absorption cross section does not differ markedly from that of 

liquid water droplets). In general, the cross section 0' will also depend on the 

particle size. For wavelengths that are small compared to the particle size, 
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as i~ typically the case for solar radiation (see Figure 2). the cross sectioll 

is twice geometrical: (J' = 2r.r2. Thus (if We take .0\ to he the top of the 

atmosphere where T = 0) the optical depth at hf'ight :: is 

[top J 
T(::) = 27r iz d::' dr r2 n(r, z'l. (2 - ij) 

and n(r, ::') is the droplet size distribution, so that /\'(;;') = J~ .m(r. z')dz'. 

This equation is usually fe-expressed in terms of the liquid water content 

(LWC) of the <:Imid. defined by 

l '(- ) 47r J 3 ( d .H '(:: =-Pw r nr,z) r. 
3 

(2 - (j) 

wherf' P...; = 106g / rrr1 is the density of water. The ('if{'divf' radill~ is ddint'd 

by 
LWC(z) ·b J - p r 2n(r.z)d::. 
1"eff'::) - T 1L 

(2 - 7! 

Therefore cne finally writ('~ the optical depth in the form 

r(::) = ~ 1 J LWq z')d::'. 
.) 
- P't r eff ' 

(2 -~) 

If :: is below the cloud. th"n the total optical thickness of the c1011d is 

r· 
:l LWP 
.) . 
- 1"eff p", 

(2 - 9) 

wlu'r(' the liquid water path is 

fr
tor> 

LWP == LWC(z') dz'. 
hot tom 

(2 - 10) 

Cruddy. then. LW P == LW('· t, whert' f is the cloud thickness The liquid 

water content varies greatly with cloud type, as show1l in Table 24. as does 

tllf' ml'an cloud thirkrlf'ss. Finally, whf'n al! of this is put togetlH'L and 

t he average solar z('nitn angle of (jO° is included, th(' pf('\'iol1~ly' infcfwd 
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Table 2 

LWC (g/m3
) t (km) 

Cumulus .4 2 

Cumulonimbus 
Tropical 1.0 .J 
Trade Wind 1.5 2 
Midlatitude 1..5 2.5 
Polar 1.5 2 

Altostratus/ Altocumulus .1 .5 

St rat us/Stratocumulus .2 

:'-Jimbostratu5 .1 3 

average cloud albedo of A,5 results from an average optical thickness r- = 6. 

assuming a simple geometry of plane parallel clouds. Since in fact clouds are 

horizontally variable. and there is some absorption. this value is actuaily a 

lower bound. 

Experimentally measured cloud albedos vary greatly, as a function of 

type. latitude. solar zenith angle. and other parameter.,. nut overall, they 

are not inconsistent with the inferred value of .4.5. Therefore, we may have 

some confidence in the value of T- obtained above. 
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From tIl(' formula for T', we s(·(· that it varies inversely with til(' dfccti\'(' 

droplet radills. Thus a cloud ha.ving the same I,W1' as allo\lwr bllt a 1M).';!' 

\\1l111\wr of smaller droplets, will hav(' a larger T- alld thereforr' a \argPf albedo. 

If on(' asks, t h err' fort, , what changes Illay takt' place in dotl,1 aHwdo 

(to which, as we'\"(· rt'markt,d ('arlier. the earth's sllrfac(' krnperaturt' is px, 

tre!lwly scnsitiw') due to man's activities. we must cOllcpnlrate on T',jJ' For 

(·xamplt>, an increas(' ill 7" r 11 of 107< (which corresponds to a dt'cn'asc ill ~.\" 

of :~OVc) [edures the albedo ('!lough so that ~T surfaC(' = 1.:~O('. Or. as illl 

lIther exampk. reducing S by a factor of2 is t'<tuivalclll Id dOllblil1!!; the (,OL 

cOllcentration in the atmosphere. 

:\ further dfeet of reduring droplet sizp, whilt' kcq)in,ll; the total L\\"(' 

nHlslant. is likdy to be an il;rrf'ase in cloud lifetime, and ("()TlSt'qlH'tlt\y of 

aVPfage cloud (0\'('[. Figurt ' 2" shnws that typical dropkt siz('s are noW ·'}-IO 

11l1!. Ttwse do Ilot rain out lIlltil trlPY n)aksCt, to form large!' drop" llf:iO IITIl 

diiHlH'tf'r or more. TlwH'fon' if the lllf'illl cirop\pt sizt' W('rt' to decrease. the 

tinw to coalf'sCt, to a sizf' which rain will grow, thl1~ incrcasing a\'('ragt' cloud 

Ii fpt inH' . 

.v and r"fJ aH' laf/.!/'ly df'tf'nllirwd hy til(' ll11Illlwr of (T:\ i\vailabJ... 

Tb('sf' vary wid<'ly bctw('<'n land and water (Figure :1)';. 

O\'('rall. frolll t hl' foregoing dis(,ll~sioll of ciolld a lI)('do, allY model pur­

port ing 10 pn·did )l;lobal ciilllat(' challPP duf' to ~n'f'llh()tls(' gas forcing, or 

anything PlS(', n('eds to bf' able 10 I'vall1all' the fra(,tional surf<l('f' an'as of trw 

t·arlii ('ow'rf'd by (particularly low) douds. tlw liquid wal!'r ront('nt of tlw 
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Figure 3. (a) Percentage of marine cumulus clouds with indicated droplet concentrations (b) 
Droplet size distributions ir. a marine cumulus cloud, (c) Percentage of continental 
cumulus clouds with indicated droplet concentrations. (d) Droplet size distributions 
in a continental cumulus cloud Note change in ordinate from (b) 

11 



clouds, the droplet effective radius, the droplet number, and the number of 

CCN, to an extraordinarily high degree of precision; less than 5% accuracy 

will be required in all of these quantities. 

This is an exceedingly stringent requirement on GCMs, and on comput­

ing capacity. Nothing like this precision is now available, and, indeed, many 

of these parameters are not even included in present models. 
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3 CLOUD CONDENSATION NUCLEI OVER 
THE OCEAN 

As greenhouse gases in the atmosphere increase, the earth warms, evap­

oration increases, and the liquid water content of all clouds except cirrus 

increases. Therefore, both the albedo and the absorption of outgoing IR 

radiation increases. Most GCMs predict that the net effect is a positive feed­

back, because of the simple observation that an increase of temperature at 

low altitude will decrease low clouds while a decrease of temperature at high 

altitude will increase high clouds. Various effects, however, may reverse this. 

The impact of cirrus clouds is one uncertainty. Their effect is diffi­

cult to compute, since they are composed entirely of ice crystals, which are 

anisotropic and whose effect on radiation is not quantitatively well under­

stood. They are also not well studied experimentally; they are very high and 

also often even difficult to see visually. 

It is also unlikely that fractional cloud cover will remain unchanged if 

evaporation increases. Generally, an increase in cloud cover will be a negative 

feedback. Figure 47 shows measured changes in average cloud cover over the 

ocean from 1952 and 1980, as a function oflatitucle, annually averaged. Could 

this be due to global warming? 

A major uncertainty is the effe(·t of global warming on the number of 

CCN, particularly oceanic CCN. 

l5 
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Marine CCN have two major components; sea salt and non-sea salt 

sulfate (abbreviated NSS). By volume, these are comparable. But the sea 

salt component is composed of much larger particles, so by number ;-;SS 

completely dominates (see Figure 5)8, 

To act as ,1 CCN, an aerosol particle must he hydrophilic and above 

a critical size, which is a function of the degree of supersaturation of water 

vapor in the cloud. Over the ocean the critical size is thought to be in the 

range of .05 to .14 Jtm, corresponding to supersaturation of 0.1 o/c to O . .')o/c. 

(See Figure 5 again.) 

Empirically, the number of CCN over the ocean is around 100 per cm
39 

(to be compared with tens of thousands per cm3 over polluted land areas). 

and since this is about the same as the droplet number density in marine 

clouds. it is thought that the number of CCN available is a limiting fador in 

the growth of marine clouds. 

If we accept the idea that NSS are the dominant CeN, we must next ask 

how a change in global climate will affect the number of ;\iSS particles. (\Ve 

recall the apparently very strong correlation with the ice age ending 15.000 

years ago shown in Figure 6.)9 

The present concept is that NSS is produced by the oxidation of variolls 

sulfur ga.'>es coming from the surface of the sea9 , Dimethyl sulfide ((CH3 )zS. 

abbreviated DMS) is alleged to be the major oceanic source, and it is be­

lieved to be of biologic origin. It has a measured con('entration of about 

lOOng/liter at the sea surface, which varies relatively little over the whole 

Ii 
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figure 6. MSA (CH3S0~) down the Dome C core; the isotope proflle (8D%o) indicate the 
Holocene and the end of the last ice age. 
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oc{'an surface (by a factor of nf) more than about 2). The entire chain of 

marine biochemistry leading to this concentration of DMS is very complex. 

involving a number of other molecules and many types of marine animals 

and plants. In Figure 79
, displayed is the presently conjedured life cycJ(~ of 

DMS in the sea. 

For our purposes it is not necessary to understand this intricate IH'twork 

of connections. The critical question is whether or not oceanic warming would 

increase or decrease DMS production, and with it, the number of CC~ and 

hence both the albedo and cloud lifetime. 

Figure 6 suggests a positive feedback; a colder environment produces an 

increase in sulfate CCN, which in turn increased cloud albedo which further 

cooled the earth. But in fact which way DMS production will change if the 

earth were to warm is not yet known. The effect could be either a positive or 

a negative feedback, and, given the extreme sensitivity of the earth's surface 

temperature to cloud albedo, as discussed earlier, the feedback effect could 

be very important. 

Evidently, further research is needed on this topic, and very likely it 

must be incorporated in some way or other in computer models. 

Finally, the existence of this potentially large feedback mechanism. so 

recently discovered. suggests that there are other important feedbacks which 

are still unnoticed. We are not yet ready for computers to hand us believable 

predictions about future climates, even on Vf"ry gross scales. 
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